Role of Endogenous ENaC and TRP Channels in the Myogenic Response of Rat Posterior Cerebral Arteries

نویسندگان

  • Eok-Cheon Kim
  • Soo-Kyoung Choi
  • Mihwa Lim
  • Soo-In Yeon
  • Young-Ho Lee
چکیده

AIMS Mechanogated ion channels are predicted to mediate pressure-induced myogenic vasoconstriction in small resistance arteries. Recent findings have indicated that transient receptor potential (TRP) channels and epithelial sodium channels (ENaC) are involved in mechanotransduction. The purpose of this study was to investigate the role of TRP channels and ENaC in the myogenic response. Our previous study suggested that ENaC could be a component of the mechanosensitive ion channels in rat posterior cerebral arteries (PCA). However, the specific ion channel proteins mediating myogenic constriction are unknown. Here we found, for the first time, that ENaC interacted with TRPM4 but not with TRPC6 using immunoprecipitation and confocal microscopy. METHODS AND RESULTS Treatment with a specific βENaC inhibitor, amiloride, a specific TRPM4 inhibitor, 9-phenanthrol, and a TRPC6 inhibitor, SKF96365, resulted in inhibition of the pressure-induced myogenic response. Moreover, the myogenic response was inhibited in rat PCA transfected with small interfering RNA of βENaC, TRPM4, and TRPC6. Co-treatment with amiloride and 9-phenanthrol showed a similar inhibitory effect on myogenic contraction compared to single treatment with amiloride or 9-phenanthrol. The myogenic response was not affected by 9-phenanthrol or amiloride treatment in PCA transfected with βENaC or TRPM4 siRNA, respectively. However, pressure-induced myogenic response was fully inhibited by co-treatment with amiloride, 9-phenanthrol, and SKF96365, and by treatment with SKF96365 in PCA transfected with βENaC siRNA. CONCLUSION Our results suggest that ENaC, TRPM4, and TRPC6 play important roles in the pressure-induced myogenic response, and that ENaC and TRPM4 interact in rat PCA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor.

Mechanosensitive ion channels are thought to mediate stretch-induced contraction in vascular smooth muscle cells (VSMCs); however, the molecular identity of the mechanosensitive ion channel complex is unknown. Although recent reports suggest degenerin/epithelial Na+ channel (DEG/ENaC) proteins may be mechanosensors in sensory neurons, their role as mechanosensors in vascular tissue has not been...

متن کامل

Yes, no, maybe so: ENaC proteins as mediators of renal myogenic constriction.

The myogenic response is an intrinsic vascular response characterized by vasoconstriction in response to increases and vasodilation to decreases in perfusion pressure. Recent studies suggest this response may play a significant role in the protection of the renal microcirculation from pressure dependent injury, especially with concomitant renal disease.1 Although the myogenic response was first...

متن کامل

ENaC Proteins as Mediators of Renal Myogenic Constriction

The myogenic response is an intrinsic vascular response characterized by vasoconstriction in response to increases and vasodilation to decreases in perfusion pressure. Recent studies suggest this response may play a significant role in the protection of the renal microcirculation from pressure dependent injury, especially with concomitant renal disease.1 Although the myogenic response was first...

متن کامل

Involvement of Epithelial Na+ Channel in the Elevated Myogenic Response in Posterior Cerebral Arteries from Spontaneously Hypertensive Rats

Hypertension is characterized by increased peripheral vascular resistance which is related with elevated myogenic response. Recent findings have indicated that epithelial sodium channel (ENaC) is involved in mechanotransduction of the myogenic response. The purpose of this study was to investigate the involvement of ENaC in the elevated myogenic response of posterior cerebral arteries (PCAs) fr...

متن کامل

Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries.

Local control of cerebral blood flow is regulated in part through myogenic constriction of resistance arteries. Although this response requires Ca2+ influx via voltage-dependent Ca2+ channels secondary to smooth muscle cell depolarization, the mechanisms responsible for alteration of vascular smooth muscle (VSM) cell membrane potential are not fully understood. A previous study from our laborat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013